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GENERALIZED CORRELATIONS IN THE SINGULAR CASE

Ashis Sen Gupta

1. Introduction. When the covariance matrix is

singular, the usual expressions for the multiple, partial,

canonical [see, e.g., Rao (1973)] and some generalized

canonical correlations [for a review, see Sen Gupta (1979)]

need to be revised. Tucker, et al. (1972), Khatri (1976)

and Rao (1979), (1980) have provided formulae for some of

these correlation coefficients in the general case by using

g-inverses. A review of their results on multiple, partial

and canonical correlations is given first. Next, it is

shown that there exists a general representation which

covers several generalized canonical correlations and as

special cases the multiple, partial and canonical correla-

tions, too. Then a general theory is formulated which deals

with the singular case for the representation. Previous

results on multiple, partial and canonical correlations

follow as special cases of this theory. Further, appro-

priate formulae are also provided through this formulation

for various generalized canonical correlations in the singu-

lar case. Finally, the numbers of various critical genera-

lized correlations are derived for the general case.

2. Multiple, partial and canonical correlations in

the singular case. Let R =(R 1 .I :R p) be the correlation

matrix of p variables. Further, let R_ = (r ~ (T T1:. :T

be any g-inverse of R. Define, RR =Q=(Q 1:.:Q ). Let
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I have the unit vector ei , as its i-th column, i =l...,p.
p

Result 1. The squared multiple correlation of x on
X,...,X is

R 2 1if Q ~e1(2...p) 1 1

11-_1
=1-(r) if Q1 = e1

Result 2. The partial correlation between X 1 and X2

eliminating X3 , X4 ,... ,Xp is

r12.(34 ...p) = 0 if Q1  e 1 and Q2 = e 2 or if Q1 = e 1 and Q 2  e2

= 1 if Q1 eI and Q2 e 2

= -r12/(rllr22/2 if Q1 = e1 and Q2 
= e2

Let X1 and X2 be two sets of variables with the joint

dispersion matrix Z, partitioned accordingly.

Result 3. The squared canonical correlations are the

non-zero roots of the determinantal equation

'11E12E22 21 - P2I1 = 0 where E11 and E22 are any

g-inverses of E 22 and E 11 respectively.

For proofs and further discussions on the results

see Rao [(1979), (1980).]

3. Generalized canonical correlations in the

singular case. Canonical correlations have been gener-

alized in various ways. Formulae in the general case

will be provided here for those obtained by extending

the concepts of tests of independence for two sets of

__-ALAJ
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variates--giving rise to partial, part and bipartial canon-

ical correlations [see Timm (1975) pp. 352-353] and gl- ' g2 -

bipartial canonical correlations [see Lee (1978)] and

some association measures [see McKeon (1965), pp. 16-19].

Various other authors [Horst (1961); Edgerton and Kolbe

(1936); Wilks (1938); Lord (1958)] arrived at the same

solution as that of McKeon for the particular case of a

single variable per set. Appropriate formula will also be

provided for the new generalized canonical correlation

arising out of the concept of minimum generalized

variance [proposed by Anderson (1958) Problem 5,

pp. 305-306 and derived by the author {see SenGupta (1979))

under constraint of equi-correlation structure of the

generalized canonical variables].

Let X = (Xl,... ,Xk), Xi :PiX, P1 +'+ Pk = p '

Disp(X) = kE , Cov (Xi, Xj) =ij and non-zero ps be

the generalized canonical correlations. Starting with the

defining equations it can be easily seen that for all the

above cases, the generalized canonical correlations

are obtained from the eigen values of k * in the metric
of Z i.e. from the solutions of

k d

(3.1) IkE* - P* k :d' = 0

where p* = 1 + (k - l)p and kEd is a diagonal super matrix

with elements E . i = 1,...,k. In the notation of Lee,
11

kE* , with k = 2, is the covariance matrix of the residual

vectors (el34' e2 .35) and (e1.34, e2 .3 5) for the gl- and
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g2-bipartial canonical correlations, respectively. In the

notation of Timm, k * = E.3 1(2.3) and E(1.4)(2.3) with

k = 2 for partial, part and bipartial canonical correlations

respectively. Also for McKeon's and the new generalized

canonical correlations, k =k

Theorem. The generalized canonical correlations, for the

methods quoted above, are given by p = (p* - l)/(k - i)

where p's are the non-zero roots of 0k* *- *-Ek]kEk~d -P*I I  0 k d

being any g-inverse of k.

Proof. First note the representation (3.1). Consider

next the following Lemmas.

Lemma 1. Let A be a hermitian matrix of order n and

rank s, and B be non-negative definite matrix of order n

and rank r such that S(A) c S(B) [where S(M) represents

the vector space spanned by the column vectors of M].

Then

(i) There exists a matrix L of order nxr such

that L'AL = A, L'BL = Ir, where A is a diagonal matrix

with s non-zero elements, some of which may be repeated

and I is the identity matrix of order r.r

(ii) The non-zero elements of A are the same as

the roots of the determinantal equation, lAB- AII = 0

with repetitions allowed, for any g-inverse B of B.

Proof of Lemma 1. See Lemma 3, Rao (1979).

Lemma 2. S(k *) C E* .

Proof of Lemma 2. Note that S(Zij) c S(Ei) for all the
o) m i foro the

Zconsidered above. This follows immediately from the
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result [see Proposition 3.31, pp. 3.15-3.16 of Eaton

that, if A = (A l  A12) Z 0 then N(A 2 2 ) c N(A1 2 ) and
A21 A22;

and N(AII) c N(A2 1 ) where N(M) is the null space of M.

Then, there exist matrices B..such thatB.jFl j = E jf i,j 1,...,k.

Hence, there exist matrices Ci such that (Cl...Ck kEd = C kEd = E

which proves Lemma 2.

Coupling Lemma 2 with Lemma 1 proves the Theorem.

Note: For k = 2, if P1 = 1, P2 > 1 and if p1 > 1, P2 
> 1

then we have the cases of multiple and canonical correla-

tions respectively. Further, with k = 2, consideration

of residual variables leads to partial correlation. Thus

the above Theorem unifies the Results 1 through 3 and also

considers simple (and not squared) multiple, partial and

canonical correlations.

4. Numbers of critical generalized correlations.

Let A and B be two hermitian matrices and B be non-negative

definite. If A is a constant and v a vector such that

Av= ABv, By 3 0, then X is called a proper eigen value and

v a proper eigen vector of A with respect to B. In the

context of Lemma 1, the elements of A are called the proper

eigen values and the corresponding columns of L, the proper

eigen vectors of A with respect to B. For the generalized

correlations, we consider from (3.1) only the proper eigen

MWi
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values of k * with respect to k*. Also note that for

k > 2, 1 and -1/(k - 1) are the maximum and minimum

possible values, respectively, for the generalized cor-

relations. Let k * be the super off-diagonal matrixk ad

such that k *= k* + k* Also let R(M) denote the
k k d kod*

rank of the matrix M.

Lemma 3. The numbers of zero, unit and -1/(k - l)-valued

generalized correlations are given by r - R(kd),

r - Rfk d - (k - 1)kE* ] and r - R(k *) respectively,

where r = R(*).kd"

Proof: The proof follows by rewriting (3.1) as

IkZ*l - Xk I = 0 where

(k , X) = kEd , (k - l)p], [ d - (k - 1 )k E ,  (k - 1)(p - 1)]

and [k E * , (k - l)p + 1] for the zero, unit and-l/(k- l)-valued

generalized correlations respectively and noting the one-one

relationship between X and p

Acknowledgements. I am grateful to Professor C. R. Rao

and Professor T. W. Anderson for their kind remarks on the

subject.
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